Write your name and student number in the top left corner of each page

1. Determine the z-transform of the following sequences and their respective ROCs including the zeros and poles (if applicable):
(a) $x[n]=\left(-\frac{1}{3}\right)^{n} \mu[n]-\left(\frac{1}{2}\right)^{n} \mu[-n-1]$
(b) $x[n]=\left(-\frac{1}{2}\right)^{n} \mu[n-1]$
2. Determine the Impulse Response $h[n]$ which satisfies the following linear constant-coefficient difference equation:
$y[n]-\frac{1}{2} y[n-1]=x[n]-\frac{1}{4} x[n-1]$
(hint: set $x[n]=\delta[n]$ and determine $h[n]$ via Fourier Transformations)
3. Consider the following LTI system:

(a) write down the transfer function of the system $H(z)=\frac{Y(z)}{X(z)}$
(b) determine the ROC, poles and zeros and plot their positions in a zero-pole plot
4. Determine the DTFT of the following sequences:
(a) $x[n]=\alpha^{n}(\mu[n]-\mu[n-8])$ for $|\alpha|<1$
(b) $x[n]=n \alpha^{n} \mu[n]$ for $|\alpha|<1$
5. Determine the 4-point circular convolution of the two length-4 sequences $g[n]=\{1,2,0,1\}$ and $h[n]=\{2,2,1,1\}$. Draw these functions and the convolution result.

Solutions for the exam of 25.01.2010:
1.

$$
\begin{gather*}
\text { a) } x[n]=\left(-\frac{1}{3}\right)^{n} \mu[n]-\left(\frac{1}{2}\right)^{n} \mu[-n-1] \\
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\sum_{n=-\infty}^{\infty}\left[\left(-\frac{1}{3}\right)^{n} \mu[n] z^{-n}-\left(\frac{1}{2}\right) \mu[-n-1] z^{-n}\right]= \\
=\sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)^{n} \frac{1}{z^{n}}-\sum_{n=-\infty}^{-1}\left(\frac{1}{2}\right)^{n} \frac{1}{z^{n}}=|n=-m|= \\
=\sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)^{n} z^{-n}-\sum_{m=1}^{\infty}\left(\frac{1}{2}\right)^{-m} z^{m}=\sum_{n=0}^{\infty}\left(-\frac{1}{3} z^{-1}\right)^{n}-\sum_{m=1}^{\infty}\left(\frac{1}{2}^{-1} z\right)^{m}= \\
\quad=\sum_{n=0}^{\infty}\left(-\frac{1}{3} z^{-1}\right)^{n}+1-\sum_{m=0}^{\infty}\left(\frac{1}{2}^{-1} z\right)^{m}= \\
=\frac{1}{1-\left(-\frac{1}{3}\right) z^{-1}}+1-\frac{1}{1-\left(\frac{1}{2}\right)^{-1} z} \tag{*}
\end{gather*}
$$

From $\left(^{*}\right)$ we determine the ROC as:
$\left|\left(-\frac{1}{3}\right) z^{-1}\right|<1$ which gives us: $|z|>\frac{1}{3}$ and
$\left|\left(\frac{1}{2}\right)^{1} z\right|<1$ which gives us: $|z|<\frac{1}{2}$
The intersection of these two regions in the complex plane is the ROC. The unit circle is outside the ROC, so this sequence does not have a DTFT. The fact that the ROC is inside the unit circle tells us that this is an acausal sequence; the second term in the initial expression confirms that.

Now, to determine the poles and zeros, we rewrite $\left(^{*}\right)$ as:

$$
\begin{gathered}
\frac{1}{1-\left(-\frac{1}{3}\right) z^{-1}}+1-\frac{1}{1-\left(\frac{1}{2}\right)^{-1} z}= \\
=\frac{3 z}{3 z+1}+1-\frac{1}{1-2 z}=\frac{3 z(1-2 z)+(3 z+1)(1-2 z)-3 z-1}{(3 z+1)(1-2 z)}= \\
=\frac{z(1-12 z)}{(3 z+1)(1-2 z)}
\end{gathered}
$$

We can see that there are two poles at $z=-\frac{1}{3}$ and $z=\frac{1}{2}$ as well as two zeros at: $z=0$ and $z=\frac{1}{12}$.
b)

$$
\begin{gathered}
x[n]=\left(-\frac{1}{2}\right)^{n} \mu[n-1] \\
X(z)=\sum_{n=1}^{\infty}\left(-\frac{1}{2}\right)^{n} z^{-n}= \\
=-1+\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n} z^{-n}=-1+\frac{1}{1-\left(-\frac{1}{2}\right) z^{-1}}
\end{gathered}
$$

The ROC is found as: $\left|-\frac{1}{2 z}\right|<1$, so the ROC is: $|z|>\frac{1}{2}$
This is a causal sequence; the unit circle is inside the ROC.
To find the poles and zeros, we rewrite as:

$$
-1+\frac{1}{1-\left(-\frac{1}{2}\right) z^{-1}}=\frac{-1}{2 z+1}
$$

there is one pole located at $z=-\frac{1}{2}$ and there are no zeros.
2.

$$
\begin{gathered}
y[n]-\frac{1}{2} y[n-1]=x[n]-\frac{1}{4} x[n-1] \\
Y(z)-Y(z) \frac{1}{2} z^{-1}=X(z)-X(z) \frac{1}{4} z^{-1}= \\
H(z)=\frac{Y(z)}{X(x)}=\frac{1-\frac{1}{4} z^{-1}}{1-\frac{1}{2} z^{-1}}= \\
=\frac{1}{1-\frac{1}{2} z^{-1}}-\frac{1}{4} \frac{1}{1-\frac{1}{2} z^{-1}} z^{-1} \\
h[n]=\left(\frac{1}{2}\right)^{n} \mu[n]-\frac{1}{4}\left(\frac{1}{2}\right)^{n-1} \mu[n-1]=\left(\frac{1}{2}\right)^{n} \mu[n]-\left(\frac{1}{2}\right)^{n+1} \mu[n-1]
\end{gathered}
$$

Alternatively, we can substitute $x[n]=\delta[n]$, then take the DTFT of both sides, divide the right side with the left and do the IDTFT to recover $h[n]$.
3.
a)

$$
H(z)=\frac{2+\frac{1}{2} z^{-1}}{1-\frac{3}{4} z^{-1}+\frac{1}{8} z^{-2}}=\frac{4 z(4 z+1)}{8 z^{2}-6 z+1}
$$

b)

To solve for the poles, we find the solutions of the quadratic in the denominator. They are: $z=\frac{1}{2}, z=\frac{1}{4}$. The zeros are: $z=0, z=-\frac{1}{4}$.

A property of the ROC is that it is outside of the outermost pole (for a causal system). So, the ROC is: $|z|>\frac{1}{4}$. The unit circle is in the ROC (the DTFT exists), and the poles are inside the unit circle so the system is stable. From the pole - zero diagram we can see that this is a Low-pass filter.
4.
a)

$$
\begin{gathered}
x[n]=\alpha^{n}(\mu[n]-\mu[n-8]) \\
X(\omega)=\sum_{n=0}^{\infty} \alpha^{n} e^{-j \omega n}-\sum_{n=8}^{\infty} \alpha^{n} e^{-j \omega n}=\frac{1}{1-\alpha e^{-j \omega}}-\frac{\left(\alpha e^{-j \omega}\right)^{8}}{1-\alpha e^{-j \omega}}
\end{gathered}
$$

b)

$$
x[n]=n \alpha^{n} \mu[n]
$$

Use the property of the Z transform: $Z(n g(n))=-z \frac{d G(z)}{d z}$ where $g(n)=\alpha^{n}$ and since we are on the unit circle, $z=e^{j \omega}$.

$$
Z\left(n \alpha^{n}\right)=-\frac{d}{d e^{j \omega}}\left[\frac{1}{1-\alpha e^{-j \omega}}\right] e^{j \omega}=\frac{\alpha e^{j \omega}}{\left(e^{j \omega}-\alpha\right)^{2}}
$$

5.

$$
g[n]=\{1,2,0,1\}
$$

$$
h[n]=\{2,2,1,1\}
$$

Circular shift and multiply to obtain the convolution result. We will shift $g[n]$:

$$
g[n] * h[n]=\frac{1102}{2211}, \frac{2110}{2211}, \frac{0211}{2211}, \frac{1021}{2211}=\{6,7,6,5\}
$$

Alternatively, we could have taken the DFT of both sequences, multiplied the results and then do the IDFT to obtain the convolution. Or, use the circular convolution matrices.

